QTouch Design Guide

Atmel provides a QTouch library for the design of capacitive sensors using the QTouch
technology. Implementation in Atmel Studio requires downloading QTouch libraries from the
Atmel website. This enables the user to create a QTouch Executable Project in Atmel Studio
6 and use the built-in library functions. Following is the link to register and download the
QTouch Library 5.0

The basic algorithm for designing a QTouch based sensor is :

1)

2)

3)

4)

3)

6)

7)

Configure sensors as keys/rotors/sliders using :
void qt_enable_key (channel_t channel, aks_group_t aks_group,threshold_t
detect_threshold, hysteresis_t detect_hysteresis)

void qt_enable_rotor (channel_t from_channel, channel_t to_channel,
aks_group_t aks_group, threshold_t detect_threshold Jhysteresis_t
detect_hysteresis, resolution_t angle_resolution, uint8_t angle_hysteresis)

void qt_enable_slider (channel_t from_channel, channel_t to_channel,
aks_group_t aks_group, threshold_t detect_threshold, hysteresis_t
detect_hysteresis, resolution_t position_resolution, uint8_t position_hysteresis)

Set the touch parameters for the library — like the threshold level, detect
integration values that set the number of counts the signal level should differ
from the reference level in order to be registered as a touch, Maximum ON
duration etc.

Initialize sensing using gt _init_sensing() to calibrate the channels and prepare the
sensors for capacitive touch. It is a library defined function.

Initialize the timer ISR to run periodically and determine the time for a capacitive
measurement.

Repeatedly call gt_measure_sensors() for capacitive measurements and to update
the status flags. Library data structure qt_measure_sensors() takes the current
time in milliseconds as the parameter and updates 10 flags.

Check if repeated measurements are required (QTLIB_BURST_AGAIN flag set
to 1). If required, then measure sensors again.

Check the gqt_touch_status[] to see if any sensors are in detect. If yes, then
perform desired action. Else, repeat from step 5.

qt_touch_status is a sub-field of the data structure gt_touch_lib_measure_data_t. The above
data structure consists of three variables :

Fields Type Comment

channel_signals uint16_t The measured signal on each channel.
channel_references | uint16 t The reference signal for each channel.
gt_touch_status gt_touch_status _t | The state and position of the configured sensors

qt_touch_status is a variable of the data structure gr_rouch_status_t.

Fields Comment

sensor_states|] For Sensor, the sensor_states. Bit “n" = state of nth sensor :
Bit Value 0 - indicates the sensor is not in detect
Bit Value 1 - indicates the sensor is in detect

rotor_slider_values[] | Rotors angles or slider positions if rotors and sliders are used. These
values are valid when sensor states shows that the corresponding rotor or
slider is in detect

The flow chart below is from the Atmel QTouch Library User Guide that gives a step-by-step
approach to the design process.

qt_reset_sensing()

The host ap

plication (optionally) calls “qt_reset_sensing()’

to reset all channels and touch sensing parameters to their
default states. This step is only required if the host wants to

dynamically

reconfigure the library at runtime

gt _enable_xxx()

" o«

The host application calls “qt_enable_key()", “qt_enable_rotor()"
and/or “qt_enable_slider()” as required to configure the touch

sensors

gt_init_sensing()

The host application calls gt_init_sensing() to calibrate all the
configured channels and prepare the sensors for capacitive
measurement

gt_set_parameters()

The host application qt_set_parameters() to initialize the threshold
parameters for the library. If the user needs to change the thresholds,

v edit the global data structure qt_config_data prior to calling this API

init_timer_isr()

The host application initializes the timer module required for

capacitive measurement

— gt_measure_sensors()

Time-critical host
application code

The host application periodically calls
“gt_measure_sensors()" to make capacitive measurements.

Part of host application
which cannot wait till multiple
measurements are complete (should
be as minimal as possible)

Check if multiple measurements are needed or not:

To resolve calibration

To resolve DI

To resolve positive recalibration
To compensate for drift

check qt_touch_status

check the global status variable “gt_touch_status” to see if any

sensors

are in detect, and the angle or position of any enabled

rotors or sliders

Non-Time critical host application code

] Host application which can be executed after

the completion of multiple measurements

for all the channels

VISUAL GUIDE WITH SCREENSHOTS :

Step 1 : In Atmel Studio 6, in the Start Pag
Executable Project and name it. Click OK.
LED_Blink.

New Project = P 2 Y S|
Recent Templates Sort by: Search Installed Templates 2|
Installed Templates T e

GCC C Executable Project C/Ce+ b ptediss
4 (C/Cxx Creates an AVR 8-bit QTouch C project
AtmelBoards .
B Boarnds GCC C QTouch Executable Project C/C++
Assembler
Atmel Studio Solution GCC C Static Library Project C/C++
GCC C++ Executable Project C/C++
GCC C++ Static Library Project C/C++

e choose New Project. Create a GCC QTouch
As an example, we named the project here

Name: LED_BlinK
Location: C:\Users\Kedari Reddy\Documents\Atmel Studio
Solution name: LED_Blink

v Browse...

Create directory for solution

Step 2 : Select the sensors you want to add in the project. The order in which the sensors are
selected is important. The wizard allows a pin configuration only in increasing order. For
example, a configuration of the sort Slider 0-2, Rotor 5-3 is not allowed. In this example, we
chose 1 of each sensor. Select QTouch Technology and the device used. Click Next.

e e T e 2 o] E- |]
4
Select Sensors, Technology & Device - Page 1 of 6 /
s = = = Device Information
Sensors Button 1 5 Wheel 0 B Slider 0 B Device Name:
Family
Technology @ QTouch) QMatrix Speed
Device Famil |Aj| - Search f jo jss
: Y Al s Ports
Name Variant App./H - Data Memory(Bytes) EEPROM(Bytes) QTouch QMatrix z‘ Datasheets
AT90USB1287 64 131 5024 4096 v v OTaaRTiTary Foraton
ATmegal284P 40/44 131 6384 4096 v T
ATmegal64PA 40744 16 024 512 v v Max Wheels/Sliders
ATmegal68PA 28/32 16 1024 512 v v
ATmega324PA 40/44 32 2048 1024 v v Maxc Channets
ATmega328P 28/32 32 2048 1024 v v Code Memonyused 0%
ATmegad8PA 28/32 4 512 256 v v DatalMemoryused | 0%
ATmega644P 40/44 65 4096 2048 v v QMatrix .
ATmega88PA 28/32 8 1024 512 v v Most Whe els/Shiders
ATtiny167 2032 16 512 512 v v Manc Channels
ATtiny44A 14/20 4 256 256 v v Code Memory used | Jo%
ATtiny461A 20/32 4 256 256 © v Data Memory used | 0%
ATtiny48 32 4 256 64 X 2 QTouch Library Help
ATtiny48 28 71 256 64 v v Atmel Studio Supported Tools
ATtiny84 14/20 8 512 512 e -
ATtiny861A 20/32 8 512 512 = .
ATtiny88 22 2 512 64 Y 4
ATtiny88 28 2 512 64 ¥ .2
ATxmegal28A1 100 139 8192 2048 - v
ATxmegal6A4 44 20 2048 1024 2 v
ATxmegal6D4 44 20 2048 1024 v v
ATxmega32A4 44 36 4096 1024 .2 v
ATxmega32D4 44 36 4096 1024 e v
Reset -
e [[picane W o |

Step 3 : Select each sensor from the dropdown and assign a Sensor ID and define the size of
each. The sensor ID assigned here will be used throughout to refer to the particular sensor.

QTouch Project Builder ="~ T 77T 7T TTTrTE mman rmnrn e e
Kit Design - Page 2 of 6
‘ 153% @ @

= {Button 0 <Button0> " M k 25 @
Z Project Id: 0xC
? Button0 Properties Project Name: default
S Hinvwern .
= Physical [Firmware |
3
°
[
3.
2 Sensor Id 0

Name Button0

Height(mm) 25 T

Width(mm) 11

0. |
Reset
=

For the Wheel and Slider, the orientation has to be selected in addition to the dimensions. In
the example, a clockwise orientation is chosen for the Wheel and horizontal orientation with
LeftToRight direction is chosen for the Slider.

™ QTouch Project Builder = g

Kit Design - Page 2 of 6

ML @@
Project Id: 0xC
Wheel0 Properties Project Name: default

Physical | Firmware

Sensor Id al
Name Wheel0
Height(mm) 75 /;\
Width(mm) 75 -
Direction [Clockwise &]
Inner radius(mm) 50 I}

Zero position 0

[Wheel 0 <Wheel0> -

saipadolq 105uaS/Hy

Reset

ErmETT N

The sensor IDs are chosen as 0 for button, 1 for the wheel and 2 for the Slider.

M QTouch Project Builder £ s

Kit Design - Page 2 of 6

JSJEE @ K
(Slider 0 <Slider0> - M HE0D
Project id: 0xC
Slider0 Properties Project Name: default

Physical | Firmware

saipadosg J05uas/y

Sensor Id 2

Name Slider0

Height{mm) 25 @

Width(mm) 75
Orientation [Horizontal v]

Direction %

Reset

Step 4 : Next the ports used have to be selected. The SNSK port is connected to the series
resistor and SNS port is connected through a capacitor to the series resistor. The sensors can
be split over multiple ports (interport) or within the same port (intraport). Therefore, if the
number of pins are sufficient, the SNSK and SNS ports can be one port. Some of the sensors
can be moved to a new port pair SNSK2 and SNS2. In this case, we used port A as the
SNSK1 and port B as the SNS. Click Next.

QTouch Project Builder = o

Assign IO Ports and Sensors - Page 3 of 6

Ports Sensors
Sensor Name Channels
) iy Wheelo 3 e
B Tlenska L Slider0 3 e
SNS1
B
Device: ATmegal284P
o <
Available Ports: ABCD " t
Sensor Name Channels
—_— Rs Available : --
> .
SNSK2 Wy Used :
Cs Free:
2
SNS2
Channels will be assigned to sensors based on the
order they are displayed in the sensors list box. Drag
and drop to reorder sensors
Reset |

BT N

Step 5 : In this step, the exact Port pins have to be assigned to each sensor (as connected in
hardware design). The pin numbers HAVE to be assigned in increasing order only. No sensor
can have its channels connected to pins in decreasing order as mentioned before. However, it
is not necessary that Port B pin O has to be connected to Port A pin 0; it can be any pin of A.

" Qlouch Project Bullder = s & E=H RO X
4
Assign SNS & SNSK pins - Page 4 of 6 Y /
Sensor Channel SNS SNSK
Port | Pin Port I Pin
Wheeld 0 s [0 - A o -
Wheel0 1 B 1~ A L 4]
Wheel0 2 8 2~ A 2~
Slider0 3 8 3~ A [z ~
Slider0 4 5[4~ A (4
Slider0 5 B 5 A s s
Button0 6 8 (6~ A 6+
Reset ‘
=

Step 6 : On clicking Next, the user is given an option to enable the debug interface and power
optimization. The Debug interface enables the application to output measurement values to
I/O pins, which can be used by a USB bridge to view the output on Hawkeye or QTouch
Studio. It is disabled for this example.

The power optimization is used to reduce the power usage of the system by about 40%.
However, this turns of the spread spectrum feature of QTouch, which is used for better
electromagnetic compatibility. We disabled this feature in the example.

™ QTouch Project Bullder = e = =0 S X
y
Advanced Options - Page 5 of 6 / /

Configure QDebug Interface
[7] Enable QDebug Interface (Allows Live streaming of Touch data to QTouch Analyzer)

Select Debug Interface | SW implemented SPI

Name Port Pin
SPI_BB_SS A 7
SPI_BB_SCK B 7
SPI_BB_MOSI C 0
SPI_BB_MISO C 1
Power Analyzer [Disable (This option is available only for selected devices.)

Extension Parameters

Delay cycles that determine the capacitance charge pulse width.

Delay Cycles 1 Possible values: 1 to 255 CPU Clock cycles (nops)

- For Rs = 1KOhm, Typical pulse time is 1us

- For Rs = 100KOhm, Typical pulse time is 4 ps
Power Optimization Disable ~ Used to reduce the power consumed by the library.

N

ErmETT EEN

Step 7 : On clicking Next, a summary is generated. Click Finish. The wizard generates the
code with separate files for setting up the timer, configuring the touch sensors, initializing the
MCU system clock etc. There is also a main.c file that provides the user with an infinite loop
to perform desired actions. The first step now is to configure the sensors using the function
config_sensors() in the file LED_Blink.qtdgn = touch.c

The user can change the resolution of the slider/rotor from 8-bit to lower. The hysteresis can
also be modified.

1 LED_Blink - AtmelStudio

File Edit View VAssistX Project Build Debug Tools Window Help

i@ S | % a9 - -S-5 [|ar| b [pebug ~|| (%) | DEBUG_INTERFACE_ || B B v - .
iPERMLR AL S i u b |eE(EEE T |H [P A) B o 8|2y c|i o ATmegal28 § Notool s

[ENTRIEd main.c StartPage

9 qt_set_parameters v‘ = I¢ static void qt_set_parameters(void)

[Solution 'LED_Blink' (L project)
Sistatic void qt_set_parameters(void) N Bl LED_Blink

(2 Dependencies

24 Output Files

/* This will be modified by the user to different values */ & src

qt_config data.qt_di 2; €
qt_config_data.qt_neg_drift_rate 20; 33 QTouch
qt_config_data.qt_pos_drift_rate 5; |4 LED_Blink.qtdgn
qt_config_data.qt_max_on_duration = @; 1 ¥ touch.c
qt_config_data.qt_drift_hold_time = 20; ¥ touch.h
qt_config_data.qt_recal_threshold = 1; €] main.c
qt_config_data.qt_pos_recal_delay = 0;

config_sensors -
Purpose : Configure the sensors LT <3 Solution Explorer
Input : n/a
output : n/a
Notes : Generated code from QTouch Studio. Do not change

Properties

Fistatic void config_sensors(void)

qt_enable_key(CHANNEL_6, NO_AKS_GROUP, 1@u, HYST_6_25);
qt_enable_rotor(CHANNEL_@, CHANNEL_2, NO_AKS_GROUP, 10u, HYST_6_25, RES_8_BIT, Ou);
qt_enable_slider(CHANNEL_3, CHANNEL_S, NO_AKS_GROUP, 1@u, HYST_6_25, RES_8 BIT, @u);

R ErrorList B Output
Ready Ln321 Col39 Ch39 INS

Step 8 : The QTouch parameters can also be changed in the above file. The function
qt_set_parameters() sets default values for the parameters. The user can change these values
depending on the functionality and sensitivity desired. Refer to the end of this file for a
description of what each parameter indicates.

Step 9 : The ISR is initialized in the function init _timer_isr() in src = QTouch -
init_mcu_atmegal284.c

The timer is initialized to run at 50ms. This time can be changed if desired by the user
depending on how often the touch measurement wants to be made.

|7 LED_Blink - AtmelStudio - I O[S
File Edit View VAssistX Project Build Debug Tools Window Help
A - Sl $ B9 - -@-E [Rar| b [pebug -/ | (3 | DEBUG INTERFACE | RAE B8 2|0&0@ 3865

PR Do Soimua| D u b |o=(E%EE T | He | @ ol) 8o 88| oy | ATmegal284P § Notool selected |
init_mcu_atmegal284.c X -~ Solution Explorer
9 BRC - 3| &
@l Solution 'LED_Blink' (1 project)
S#if defined (_ATmega1284p_) < 4 1 LED_Blink
S#if defined(_QTOUCH_) , [Dependencies
B/ = . 4 Output Files
= 4 s
4 [Qouch
(<] BitBangSPI Master.c
Fvoid init_timer_isr(void) [n] BitBangSPL Master.h
Q) eeprom_access.c
/* set timer compare value (how often timer ISR will fire) */ [n] eeprom_access.h
OCR1A = (TICKS_PER_MS * qt_measurement_period_msec); BliitigcistpecsiZEts
] libaviSlgl-8qt-k-2rs.2
2] licensetxt
9l QDebug.c
/* timer prescaler = system clock / 8 */ [QDebugh
TCCR1B [= (lu << C511); gQDebHQSmmgsﬁ
] QDebugTransport.c
/* timer mode = CTC (count up to compare value, then reset) * (] QDebugTransporth
TCCR1B |= (1u << WGM12); (1] qt_asm_avr.h
¥ s51) qt_asm_tiny_mega.s
1] touch_apih
4 [a} LED Blinkgtdgn
* set flag: it's time to measure touch ‘%) touch.c
time_to_measure_touch = 1u; ‘A touch.h
€] main.c

sanadosg 3

Purpose : configure timer ISR to fire regularly

/* enable timer ISR */

TIMSKL |= (lu << OCIE1A);

EIISR(TIMER1_COMPA_vect)

/% update the current time */
current_time_ms_touch += jjt_measurement, Jeri%_ms!c;

set timer period
TR <3 Solution Explorer

R Eror List B Output
Ready

The user can change gt_measurement_period_msec macro defined as 50 in the above case to
any value desired.

Step 10 : In main.c, the system is initialized by disabling the JTAG pins and prescaling the
system clock (if desired). The file qt_asm_tiny_mega.s in src = QTouch does this using
assembly language. Next the function defined for touch initialization fouch_init() is called.
This function sets up the Studio Masks which can be obtained from the QTouch studio by
defining the pin configurations and type of sensors desired. It configures the sensors
(config_sensors()), sets up the touch parameters with default values. (qt_set_parameters())

and calibrates the sensors (g¢_init_sensing()). The function for ISR initialization is also
called. Now, the system is ready to measure data.

% LED_Blink - AtmelStudic = et - (=N Mol |
File Edit View VAssistX Project Build Debug Tools Window Help

PRSP % a9 - -3 B ar| b M pebug ~|| (2 | _DEBUG_INTERFACE_ Bl S A=
IPE R A oL S a o bR

AEEEEEEE

| Hee |- cf] el)) E (8 B | o o] owATmegal284P ' Notool selected
IR mainc it mcu_stmegal28i.c « Solution Explorer
% touch_init <[] void touch_init(void) 2|5

(& Solution 'LED_Blink' (1 project)
< + 1 D Bink

Slvoid touch_init(void) » Bl Dependencies

> [Output Files

#ifdef QTOUCH_STUDIO_MASKS 4 s

SNS_array[@][0]= @x47; 4 & QTouch

SNS_array[0][1]= ex38; (€] BitBangSPI Master.c

SNS_array[1][@]= @xe; (] BitBangSPI_Master.h

SNS_array[1][1]= @xe; €] eeprom_access.c
[n] eeprom_accessh

SNSK_array[e][e]= @x47; [S) init_mcu_atmega1284.c

SNsK_array[@][1]= @x38;

saniadoig B

] libavis1gl-8qt-k-2rs.a
st sl oo 3 e
sendif . [c] QDebug.c
[n] QDebug.h
/* Configure the Sensors as keys ok Keys With Rotor/Sliders in this function =/ = [n] QDebugSettings.h
config_sensors(); [l QDebugTransport.c
[n] QDebugTransporth
/* initialise touch sensing */ [n] qt_asm_avrh
qt_init_sensing(); & qtasm_tiny_mega.s
/* Set the parameters like recalibration threshold, Max_On_Duration etc in this function by the user =/ (1] touch_apin
qt_set_parameters(); 4 [o] LED Blink.qtdgn
) touch.c
%) touch.h
@ mainc

/* Address to pass address of user functions
* This function is called after the library has made capacitive measurements,
but before it has processed them. The user can use this hook to apply filter
functions to the measured signal values.(Possibly to fix sensor layout faults) */
#ifdef _DEBUG_INTERFACE_
#ifdef _QDEBUG_TIME_STAMPS_
qt_filter_callback = &set_timestampl;
#else

EWEERTR <3 Solution Explorer
. Error List & Output

Ready

Step 11 : For measuring capacitive data, a function called touch_measure() is called in an
infinite loop. This function checks the flag time_to_measure_touch which is set in the ISR
every 50ms. Hence, it executes every 50ms and updates the status flags using the function

qt_measure_sensors() and also updates the variable of the data structure
qt_touch_lib_measure_data_t.

Step 12 : To check the status of the sensors and angle/position values, we define two macros
as below :

mainc X

include files

-[‘('Go
+

#include <avr/io.h>

#include <avr/interrupt.h>

#define _ delay_cycles(n) __builtin_avr_delay_cycles(n)

#define __enable_interrupt() sei()

#include "touch_api.h”
#include "touch.h”

#define GET_SENSOR_STATE(SENSOR_NUMBER) qt_measure_data.qt_touch_status.sensor_states[(SENSOR_NUMBER/8)] & (1 << (SENSOR_NUMBER % 8))
#define GET_ROTOR_SLIDER_POSITION(ROTOR_SLIDER_NUMBER) qt_measure_data.qt_touch_status.rotor_slider_values[ROTOR_SLIDER NUMBER] |

pe definitions

extern void touch_measure();
extern void touch_init(void);
extern void init_system(void);
extern void init_timer_isr(void);
extern void set_timer_period(uint16_t);

Structure Declarations

GET_SENSOR_STATE(SENSOR_NUMBER)

qt_measure_data is a variable of a library defined data structure
qt_touch_lib_measure_data_t. In the above macro, we intend to get the touch status of a
particular sensor and hence, the gt_touch_status[] consists of the information desired. As
discussed earlier, gt_touch_status[] in itself is a structure that returns status of sensors and
positions/angles of the slider/rotor.

Therefore the macro gt_measure_data.qt_touch_status.sensor_status/ ...] returns 1 if the
particular sensor is in detect and returns O if it is not touched.

By checking the condition iffGET_SENSOR_STATE(SENSOR_NUMBER)), we know if a
particular sensor has been touched. SENSOR_NUMBER here is the Sensor ID defined in the
wizard. Accordingly, an action can be performed.

GET_ROTOR_SLIDER_POSITION(SENSOR_NUMBER)
It is defined as gt_touch_status.rotor_slider_values]....] returns the position of the slider
sensor or the angle of the rotor slider.

The SENSOR_NUMBER here is not the same as the sensor ID used in the macro
GET_SENSOR_STATE. This sensor number is assigned only to Rotors/Sliders in the order
in which they are defined. The sensor_number in this case is O for a rotor and 1 for a slider
since the Slider was defined after the Rotor.

SENSOR SENSOR ID SENSOR_NUMBER for ROTOR_SLIDER_VALUES
Button 0 --
Rotor 1
Slider 2 1

Therefore, a code as shown below is used to determine the sensors in detect and get the
position or angle values on a scale of 0-255.

|7 LEU_BIiNK - Atmeistudio - g = — ol X]
File Edit View VAssistX Project Build Debug Tools Window Help
A S a9 -5 BR[| b [Debug -| | (2 | _DEBUGINTERFACE_ JRFREG O iEE S22 UPBeB3d5RQ:
PR R A oG G |v o b |aSEE = T | He [@- i] E) B i B8 8| o} o ATmegal28 § Notool s,
maine X [ito
% mainfor BE BT [@co] =l &
7+ Initialize Touch sensors */ Z[| @ Solution LED_Blink' (1 project)
touch_init(); N PR

=4 Dependencies

=4 Output Files
/* loop forever */ 4

4 B src

f H

{or‘() » [QTouch
touch_measure(); 4[] LED Blinkqtdgn

%) touch.c

/* Time Non-critical host application code goes here */ 9 touchh

] main.c

if (GET_SENSOR_STATE(®)) I
printf ("Button pressed”);

A

if (GET_SENSOR_STATE(1))
{

rotor_value = GET_ROTOR_SLIDER_POSITION(®);
printf ("Rotor reads ¥i\n",rotor_value); CAPXCISEI 3] Solution Explorer

if (GET_SENSOR_STATE(2))
{

slider_value = GET_ROTOR_SLIDER_POSITION(1);
printf ("Slider reads ¥i\n",slider_value);
)
5
i

=0E

00% ~ ¢

